
A Passive Attack on the Privacy of Web
Users

Using Standard Log Information

Thomas Demuth
Department of Communication Systems

University of Hagen
Germany

What is this talk about?

How

� easy or

� difficult (?)

is it to identify

� computers (or persons) that use
dynamically assigned IP addresses

in the World Wide Web
using log information of web servers?

Motivation

� To show the feasibility beyond a level
of 'expert knowledge'

� To show how good (or how bad) it is
possible

� To motivate the use of anonymising
services (especially for non-
experts/average WWW users)

Overview

� Privacy risks for WWW users

� Known privacy attacks

� HTTP

� Information retrieval

� Terminology

� Appropriate HTTP fields for identification

� Proposed Algorithm

� Experiments and results

� Countermeasures

Overview

� Known privacy attacks

� HTTP

� Information retrieval

� Terminology

� Proposed Algorithm

� Experiments and results

� Countermeasures

Privacy Risks for WWW Users

WWW users transmit personal information

implicitly

� via HTTP

� additional information for influencing the
reaction of the web server is transferred

� language preference,

� compression type,

� authentication data.

Privacy Risks for WWW Users

explicitly

� postal address

� for getting brochures, giveaways, or
possible prizes in on-line lotteries

� individual personal information like

� hobbies/personal preferences,

� marital status,

� their income,

� or even other family members.

Privacy Risks for WWW Users

� Using this data, interested institutions are
able to track web users.

� The mentioned information can
additionally be extended by publicly
available data (address directories, ...)

� Example: Attempted merging of
DoubleClick and Abacus Online

� It can be assumed, that data brokers are
interchanging their information.

Known Privacy Attacks

Active

� Cookies

� Webbugs

� Active elements in web pages

� Active X

� Java

� JavaScript

Known Privacy Attacks

Passive

� Evaluating web server log files

� Assumption:

� IP addresses are static

� True for computers of

� companies,

� universities, ...

� But most Internet users use ISPs (e. g.
AOL):

� IP address is dynamically assigned

Known Privacy Attacks

Common estimation:

� Internet (WWW) users with dynamically
assigned IP addresses are sufficiently
secured against privacy attacks!

True?

Can information of another OSI level be
used for (re)identifying/tracking?

Known Privacy Attacks

Judgement of security experts:

� User tracking by HTTP information is
possible!

True?

How good (or bad)?
What degree of identification is

possible?
What are the (computational) costs?

HTTP

HyperText Transfer Protocol:

� Standardised protocol for exchange of
WWW objects.

� Client-server oriented

� Easily readable by humans
HTTP request

HTTP response

WWW serverWWW client (browser)

HTTP

Example HTTP request
(request for http://www.amazon.com/
GET http://www.amazon.com/
Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache
Accept: text/html, image/png, image/jpeg, image/gif,
image/x-xbitmap, */*
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Host: www.amazon.com
User-Agent: Opera/5.0 (Linux 2.2.16 i686; U) [en]

Attacker's Situation

Has

� a huge database of web server log entries
(consisting of selected HTTP fields)

� a smaller database of log entries with
extended (personal) information

Wants

� to (re)identify users by identifying log
entries as good as possible

� to track users for some time by tracing log
entries (if possible)

Similar Situation

Information retrieval (library search)

� searching by keywords

� searching in large data bases of
documents or articles

� good matching of terms and documents is
desired

Advantages

� availability of search algorithms

� metrics for quality measurement of retrieval
available

Information Retrieval

0. Database analysis

� Search for expressive keywords

� Elimination of redundancy

� Efficient storage
1. Formulation of a request

� Using keywords
2. Retrieval

� Match against each database entry
4. Presentation of the results

Process of Information Retrieval

0. Text analysis/indexing

� documents are parsed to find expressive
keywords (indices/terms)

� each document is presented by a
representation (index vector)

Goals

� elimination of redundancy

� performance reasons

Process of Information Retrieval

1. Formulation of request

� list of indices representing the desired
documents as good as possible

� type of (boolean) concatenation

2. Retrieval

� matching of the request against each
database entry (of representations)

� storing of the best n matches

Process of Information Retrieval

3. Presentation of the result

� as text, web page, etc.

General problems

� search for the best terms representing the
documents

� matching function/algorithm

Process of Information Retrieval

Quality of results

� Recall

� Precision

recall � number of relevant found
number of relevant available

precision � number of relevant found
number of relevant found + number of irrelevant found

Terminology

Access Data Set (ADS)
contains

� a timestamp describing date and time of a web
server's log entry, and

� a set of terms {t
1,1

, .., t
m,n

} , contents of a number
of HTTP header fields ({h

1
, ..., h

m
})

� ADS = web server log entry (=document)

extended ADS (eADS)

� an ADS extended by personal information of a
user

Terminology

Instance
synonymously means

� a web browser and

� a person using this browser

� implicitly defined by the browser
configuration

Terminology

Terms

Terminology / Adaption of
Information Retrieval

IR Proposed attack
index/keyword term
document ADS
document collection ADS database
search request existing ADS/
 probe ADS

Search Quality
precision
recall

Relevant HTTP/1.1 Header Fields

Irrelevant fields

� fields for transporting instances (e. g.
caches) like Cache-Control

� fields that can contain only a few different
terms like Method

In general

� The more terms a header field can contain,
the more expressive it can be

Relevant HTTP/1.1 Header Fields

Method field

� can contain 1 out of 8 terms (GET, POST, ...)

� can “mark” 8 ADS uniquely

User-Agent field

� can contain p out of n terms

� p: only technical limits, normally between 4 and
12 (average: 8)

� n: depends on the available ADS database (e.g.
320)

different User-Agent fields possible
n
p

� 320
8

Relevant HTTP/1.1 Header Fields

Used HTTP header fields
Host Trailer
User-Agent Warning
Server-Protocol Via
Accept Range
Accept-Language If-Range
Accept-Charset If-Match
Method If-None-Match
Expect If-Modified-Since
From If-Unmodified-Since

Problems

ADS by the same instance vary over time
(time dependent variance)
because of

� new preferences,

� new software installed, or

� updated browser software
or (worst case)

� new browser software

� new operating system

Problems

Consequence:
No matching on equality but on similarity

Each term has a significance (term weight):

Each ADS has a significance (ADS weight):

weight t j , k

� � ld
cnt t j , k

cnt t

weight ' a �

j � 1

n
k � 1

l j a

weight t j , k

l j a

Example: Term Weights of Header
Field User-Agent

Example: Variety in Header Field
User-Agent

Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
Mozilla/4.0 (compatible; MSIE 5.0; MSN 2.5; Windows 98; PKBL008; DigExt)
Mozilla/4.61 [en] (Win95; I)
Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.51 [en] (X11; I; Linux 2.2.15 i686)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; DigExt)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)
Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; DigExt)
Mozilla/4.0 (compatible; MSIE 5.0; MSN 2.5; Windows 98; PKBL008; DigExt)
Mozilla/4.0 (compatible; Powermarks/3.5; Windows 95/NT4)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; DigExt)
Mozilla/4.7 [en] (Win95; U)
Mozilla/4.51 [en] (X11; I; Linux 2.2.15 i686)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; BitWise Systems)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Mozilla/4.7 [de] (WinNT; I)
Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Mozilla/4.0 (compatible; MSIE 5.01; Windows 95)
Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Mozilla/5.0 (X11; U; Linux 2.2.16 i686; en-US; Preview) Gecko/20001101 Beonex/0.6-pre
Mozilla/5.0 (X11; U; Linux 2.2.16 i686; en-US; Preview) Gecko/20001101 Beonex/0.6-pre

Up to 23.4 % of ADS
are unique within the
User-Agent header

Example: Variety in Header Field
User-Agent

Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
Mozilla/4.0 (compatible; MSIE 5.0; MSN 2.5; Windows 98; PKBL008; DigExt)
Mozilla/4.61 [en] (Win95; I)
Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.51 [en] (X11; I; Linux 2.2.15 i686)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; DigExt)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)
Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; DigExt)
Mozilla/4.0 (compatible; MSIE 5.0; MSN 2.5; Windows 98; PKBL008; DigExt)
Mozilla/4.0 (compatible; Powermarks/3.5; Windows 95/NT4)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; DigExt)
Mozilla/4.7 [en] (Win95; U)
Mozilla/4.51 [en] (X11; I; Linux 2.2.15 i686)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; BitWise Systems)
Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Mozilla/4.7 [de] (WinNT; I)
Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Mozilla/4.0 (compatible; MSIE 5.01; Windows 95)
Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Mozilla/5.0 (X11; U; Linux 2.2.16 i686; en-US; Preview) Gecko/20001101 Beonex/0.6-pre
Mozilla/5.0 (X11; U; Linux 2.2.16 i686; en-US; Preview) Gecko/20001101 Beonex/0.6-pre

Analysis of ADS database

Parameters of used ADS data base

� 2.7 billion ADS

Algorithm

Step -1:

� For each ADS in the ADS database (new) terms
are determined and stored:

Step 0:

� For each ADS a in the ADS database, the
(binary) index vector is determined:

Result: Database of representations of all ADS

�

t � t1,1 , � , t1, cnt h 1
, t2,1 , � , t2, cnt h 2

, t3,1 , �

iv a � b1 , � , b �

t

Algorithm

For each search:
Step 1:

� ADS a
probe

 to be tracked, weight(a
probe

) and

index vector are calculated
Step 2:

� For each ADS a
i
 in the ADS database the

similarity to a
probe

 is calculated

similarity a probe , ai
�

r � 1

l iv

s � 1

l iv

iv r a probe
� iv s ai

� weight tr

� weight ts

Evaluation

Dynamically assigned IP addresses normally
does not vary during an Internet session

PAP (Potential Activity Period)

� A group of ADS assumed to be generated
by the same instance

� Fulfil criteria:

� Same IP address (as initialising ADS)

� Similarity to a
probe

 is high enough

(threshold sim)

� Lies within a given time window t

Evaluation
PAP and PAP Intersections

Grade of Anonymity of an ADS

Two PAP intersecting (with the same IP
address) build a PAP intersection:

� The more intersections, the more
anonymous the probe ADS is

� The more common the configuration of the
instance, the more common the generated
ADS are

� The more common the ADS, the more
intersections occur
The PAP intersections of a probe ADS
form an Anonymity Set for the probe

Experiments and Results

� 300 ADS of the ADS database have been
“mutated” resulting in ca. 13.000 test ADS

� The mutated (and marked) ADS have been
spread over the database

� Precision: How good is the algorithm in
finding relevant ADS

Experiments and Results

Experiments and Results

�

sim

Experiments and Results

Algorithm shows

� on average

� precision up to 0.71 (desired)

� recall up to 0.98

� local optimum at sim = 35 %

� at maximum

� precision up to 1.0 (desired)

� recall up to 1.0

� Correlation between weight and precision is
identical to an “a priori” assertion/ predication

Experiments and Results

�� ��� �� ��

�
	

� �
 �� �

Experiments and Results

ADS examples
ADS with weight 87.58 and precision 0.82

ADS with weight 156.01 and precision 0.97

<DATE> <TIME> <HOST>.dip.t-dialin.net <IP>
Mozilla/4.0 (compatible; MSIE 5.5 Windows
98; Win 9x 4.90) HTTP/1.0 GET */*

<DATE> <TIME> <HOST>.uni-hamburg.de <IP>
Mozilla/4.76 [de](X11; U; Linux 2.2.10 i686)
HTTP/1.0 GET image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, image/png
iso-8859-1,*,utf-8 gzip de, ex-MX, es, en

Experiments and Results

Algorithm shows

� The higher the weight of an ADS, the
higher the precision of the retrieval is

� The higher the number of PAP
intersections, the lower the precision of the
retrieval is

Countermeasures

In general

� Increasing the anonymity set

� Producing more PAP intersections

� Decreasing the relative similarity to the
probe ADS

� Stronger variation of the instance's
configuration

Countermeasures

1. Anonymising proxies

� anonymizer.com

� Acting as an intermediary

� Transforming (unifying) the HTTP request

� More ADS with the same weight are a
found

� More PAP intersections occur

Countermeasures

2. Local proxies

� extending HTTP header fields by random
and/or valid terms

� different for each access

� possible, because HTTP header fields are
considered from left to the right

� intended header fields are interpreted
correctly

� can be performed by simple software on
each computer

Conclusion

Attack/algorithm

� shows, how to measure web accesses
generated by an instance

� shows, how to compare accesses

� shows, that it is possible to identify
instances (and therefore people)

� depending on

� the instance/browser configuration

� the desired precision

� tracking is also possible with little more
expenses

Thank you

for your attention!

Reviewer's Remark (Part 1)

Reviewer:
Some of the header fields listed are not
relevant for identifying users (e.g. if-None-
Match, Host, Range, If-Modified-Since),
because they are more kind of
identifications of the requested page or
server. Almost every browser sends these
special headers in order to request a
certain page. Without these header fields
the number of distinguishable requests
gets substantially smaller.

Reviewer's Remark (Part 1)

1. Analysis of the probe ADS shows the
usage of header fields:

if-match 0%
if-modified-since 0%
if-none-match 2.2%
if-range 0%
if-unmodified-since 0%
if-range 0%

Conclusion: not used in most cases.

Reviewer's Remark (Part 1)

2. Etags as identification mechanism:

� Etags are “strong validators”

� HTTP/1.1, 13.3.2: “... reliable validation in
situations where ... the one-second
resolution of HTTP date values are not
sufficient”

� Can be unique because of very short
lifetime (< 1 s)

� Etag could be misused to “mark” users

Reviewer's Remark (Part 2)

Reviewer:
I'm anyway in doubt about the idea of identifying users
by the remaining header fields, because users mostly
use a standard windows with standard IE, i.e. all users
with the same windows version have the same
fingerprint. (Nevertheless this method of identification
by header fingerprinting only works for exotic
configurations.)

Right!

� But that is one statement of the article/presentation.
And

� Configurations don't have to be exotic, but they must
not be trivial.

